top of page

COORDINATION, BALANCE 

AND PROPIOCEPTION

Coordination is the capacity of connecting the information send from the brain through the spinal cord to the muscles, to produce a complex move smoothly and efficiently with the right type of muscles contraction with the proper sequence and timing. For example: running, jumping or throwing. In other words, improving your neuromuscular pathways.

Proprioception

The brain constantly engages in a process designed to position our bodies based upon the information it receives from our senses. This ability is made possible because of the existence of proprioceptive processes. Proprioception can be explained as the awareness of movement and body position. Sometimes proprioception is defined as the body’s joint positioning system. Effective proprioceptive processes are dependant upon the ability of the brain to integrate information from all of the sensory systems including feedback from muscles, joints, vision, the tactile sense (touch/pressure) and the sense of balance or vestibular system.

Joint stabilization is the ability of muscles that have been appropriately activated to stabilize a joint. The process of joint stabilization/joint positioning is critical to athletic performance and injury prevention. Often times an athlete who has suffered multiple ankle injuries will assume that he or she has ‘weak’ ankles. This may not be the case considering the fact that the athlete is probably in excellent physical shape. The more likely scenario is that the joint positioning systems (proprioceptive processes) that the brain uses are not positioning the joint properly in the midst of athletic movements. Over time, this poor joint positioning will lead to injury. By improving the brain’s ability to integrate all the information being received from the various senses and formulate appropriate movement responses the chances of poor joint positioning and injury are reduced.

Balance activities that integrate the visual, auditory, kinesthetic, tactile, and vestibular senses have the effect of improving the proprioceptive processes that help to reduce injuries and improve performance. These improvements can be realized because sensory integration activities increase the effectiveness and efficiency of the neural processes in the brain. As neural capability and efficiency increases, a variety of other benefits are realized. Timing improves, vision improves, sense of balance improves, mental processing improves, reaction time improves, proprioception improves. In short, athletic performance improves.

Because balance therapy is so foundational to efficient brain processing, activities that improve brain processing will improve performance in both academics and athletics. This is important for the student athlete or coach because Balametrics provides a program that will improve academic success and athletic performance at the same time.

bottom of page